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region reduces to a problem of the form (3.2), where the conditions as Y....-~ are r~ni~~,i 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

the conditions at the trail axis of symmetry 
--I----- 

Y=Vr, -0 when Y=O. 
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A THREE-DI~~SIO~L HYPERSONIC VISCOUS SHOCK LAYER 
IN TAO-PHASE FLOM* 

S.V. PEIGIN 

A three-dimensional hypersonic flow of visous gas containing solid or 
liquid deformable particles past smooth blunt bodies with permeable 
surfaces, is considered. A numerical solution is obtained near the 
stagnation point of double curvature for a wide range of values of the 
Reynoldsnumber,Sizes and compositions of the particles, shape of the body 
and the injection (suction) parameters. Characteristic velocity and 
temperature profiles across the shock layer are given for each phase, and 
also the dependence of the separation, friction and heat exchange coeffic- 
ients at the body surface on the Reynolds number and other defining 
parameters of the problem. It is shown that the presence of particles in 
the flow leads, other conditions being equal, to a reduction in the 
separation of the shock wave. The asymptotic behaviour of the equations 
of the three-dimensional two-phase hypersonic shock-layer is analysed for 
the limiting case of small particles. It is shown that in this case the 
flow separates into two layers; equations are given for the principal 
terms of the expansions in each layer, and boundary conditions are given 
following from the conditions for matching the solutions in adjacent regions. 
An analytic solution of the problem in the approximation of two inviscid 
layers separated by a contact surface is obtained for the layer adjacent 
to the body near the stagnation point for large Reynolds numbers and 
strong injection. 

The motion of heterogeneous particles in plane or axisymmetric shock layers was studied 
earlier in /l/, in the inviscid formulation and assuming that the effect of the particles on 
the gas-dynamic parameters is small.. A numerical solution of the problem of a supersonic, 
inviscid two-phase flow past a sphere was obtained in /2---41. Homogeneous gas flow in a 

viscous, hypersonic three-dimensional shock layer near the stagnation point was studied in 15;. 
*?rikl.M;ttem.Hekhan.,48,2,254-263,3.984 
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1. Let us consider a three-dimensional hypersonic flow of gas containing spherical 

particles of radius a and density Pso past a blunt body. Assuming that the conditions of 
Validity of the model of uniformity of the discrete phase hold, we shall study the flow in 
question using the equations of the mechanics of a two-velocity, two-temperature continuum /6/. 

we assume that the Brownian motion of the particles and their interaction are not taken 
into account, and the volume density of the particles can be neglected. 

Let us choose the curvilinear coordinate system (Xi} as follows. Let z3 = const be the 
equations of a family of surfaces parallel to the body surface 23 = 0; 2, x* are chosen at 

the surface. The equations of a three-dimensional hypersonic two-phase ViSCouS shock layer 
have the following dimensionless form in the {xi}-coordinate system: 

-$(p"'1/E)=G (1.1) 

p(Du" _t A;;,uW)= - *Tz&@~- 

WB'PP*(~=-a*") + -&(++$) 

p.&@~~+ ~~~~~(a~ - tl$ S)=_2dP 
i+s a* 

PDT=-& @ 
-++7 

p YycLB-g-+ 

E&q3p&-J [Y.qJ (u” - u*qufJ - u$) f t?* (u” - usy] - 

2 N;pp.e (T - T*) + & (-& $j 

-$p.u:/~) =O, P=pT, P-T” 

Here pairs of like indices denote summation, except forthepairs in the round brackets 
which are not summed. The Latinindices take the values 1, 2, 3 and the Greek indices 1, 2; 

V,ua, v,ed are the physical components of the velocity vector in the directions P,fl, P-e4 

(To/T,) P, @pmpI TOT, pop, h,~~=const are the pressure, denisty, temperature, the coefficients 
of viscosity, thermal conductivity and heat capacity of the carrier phase respectively; plap, 
is the particle "gas" density , c is the heat capacity of the material of the particles, a = 
const is the Pradtl number, &e, b,p are the covariant components of the tensors defining the 

first and second quadratic form of the surface, 
manner on aam bag and are given in /5/. 

and the coefficients Ajk.' depend in a known 

All linear dimensions are referred to the characteristic dimension R, and the normal 2' 
coordinate to ER. Here and henceforth the indices S,CQ,W will refer to the particle gas 
Parameters at infinity and at the surface of the streamlined body respectively. We &SO 

introduce the function cp defining the difference between the law of particle resistance and 
Stokes Law (rp = c,Re,72&, Re, = Zap] V -V, &J- In the course of actual computations the func- 

tions (0 = cp (Re, M), Nu= NU (Re,M) describing the law of phase interaction were determined 
using the results obtained in /7/. 
~"1, Numl1. 

We note that in the special case of Stokes interaction 

Equatb= (1-l) were obtained from the Navier-Stokes equations for a two-phase system 
/0/ written in the {z'}-coordinate system , 
product K;= 

in which we assumed that a --+O,,Rtl -0, while the 
ei%e was of the order of unity. 

are retained in (l.l), 
The terms with longitudinal pressure gradient 

since at large Reynolds numbers they play a major part in the layer 
surrounding the body surface. 

In formulating the boundary conditions at the shock wave i= r,*(z',$) we shall assume 
that the Particles Pass through the shock wave without changing their compositiom and, that 
the generalized Rankine-Hugoniot relations written in the hypersonic approximation hold for 
the gas. We also assume that the particles in the oncoming flow are in thermal and dynamic 
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When K-cm, which corresponds to large Reynolds numbers, conditions (1.2) become the 
usual Rankine-Hugoniot conditions for a two-phase medium written in the thin layer approxima- 
tion /6/. In establishing the boundary conditions at the body surface we assume that the 
particles reflected from the body can be disregarded. We write the following boundary condi- 
tions for the carrier phase an the streamlined surface, with the slippage rate and temperature 
jump taken into account /9/: 

@,2--6 ny vl;p &a 
0 2(y+If '-7' f= 3 = G (x’, 9) (1.3) 

Here 6 is the diffuse reflection coefficient and v is the accommodation coefficient, 
both assumed equal to unity during the actual computations, and G(ti,x*) is a given function. 
We note that from (1.3) it follows that the slippage rate and temperature jump are of the 
order of s'laK-' t therefore at low Reynolds numbers the effect in question has a finite influ- 
ence on the characteristic parameters of the flow. The effect can be disregarded when Re>1. 

2. To solve the initial problem numerically, we changein (1.1) to new dependent and 
independent variables according to the formulas 

*a x* 

%~=x=, %=+f; d.9, A= 5 pJ;dzs (2.1) 

0 0 
ua Jf ~‘a=--=..“..%, 
ha dt 

T = T .J$,‘, r) 0, ula = ii”+ up 

and we shall discuss the choice of the functions Uea (E', ES), T, (%l, f') later. 
Let us now specify in more detail the choice of the coordinates (2") at the body surface. 

We shall consider a Cartesian {Y') coordinate system with origin at the point of highest 
pressure on the body, in which the direction of the Y3-axis coincides with the velocity vector 
of the oncoming flow and the y'and Ya~axes are directed along the principal directions of the 
surface at the stagnation point. Suppose further that Y" = f(Y',Y*) is the equation of the 

surface of the streamlined body. Parametrizing the body surface in the form ti=fllCL, we 

obtain 

Let us further consider the flow near the stagnation point. By virtue of the choice of 

the coordinate system {Y'} we can write the equation describing the surface of the stream- 
lined body with an accuracy of G((Y*)" I_*) in the form 2~ -($)* + k(gefs where k = 

R,/R <I, R,R, are the radii of principal curvatures of the body surface at the stagnation 

point. Let us now write ura = u-4, T, =l~t(u,s)z. 

Using (2.1) and (2. 2) and developing the singularities appearing in the coefficients we 

obtain the equations of a hypersonic, viscous, two-phase shock layer near the stagnation 

point with double curvature (the primes are omitted) 

(2.3) 
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dl== 1, &=k, 

The equations for determining 
upon by the operator (E@)d&-la/a~~. 
form in the new variables 

Pa are obtained from the third equation of (1.1) acted 
The boundary conditions (1.21, (1.3) take the following 

521, EA$- +ua=1 (2.4) 

+$%.e=i, (fr+kf,)A=1, PxT I+? 

P, = -4 (1 + 4, u,= = 1, 8, = 227,~,-r, pI=6, n, = -s-r 

5 = 0, A (f, + kf,) = -G (2.5) 

u"= 1/ e,cy++) 1/zlA$ 

e=e,+q/F(-&)+++ 

Equations (2.3) and boundary conditions (2.4), (2.5) were solved numerically using an 
implicit finite difference'scheme /lo/ of higher order of approximation. To increase the 
computational accuracy at large Reynolds numbers and large values of the parameter g, the 

numerical mesh was compressed near the body surface and the shock wave respectively. 
The defining parameters of the problem were varied within the following limits: 8~0.1; 

0 = 0.5: -0.25 < GQ 0.25; 5 < Re < 5.10s; 0 < 6 < i; 0.5 < a E 2; 0.05 < O., < 0.5; 0 d b g IOI; 0.01 ( k < 1, 
and some of the results are shown in Figs.l-3. 

Fig.1 depicts the characteristic profiles 

B ~,to,O across the shock layer for 6=&k= 

0.1; a=0.5; p= 1; 8~1 at various Reynolds 
numbers (Re= 5, 5.10',5.104 , lines l--9respect- 
ively) . We see that a thin boundary layer 
forms at the body surface as the Reynolds 
number increases. It should also be of interest 
thatatlarge Reynolds numbers and small p 
(fairly large particles) a gas temperature 
relaxation layer is clearly delineated around 
the body. Comparing the values of the heat 
exchange coefficients computed using boundary 
layer theory with those obtained from the 

0 1 
solution of the viscous shock layer equations, 
we find that they may differ considerably from . 

Fig.1 each other even at large Reynolds nlunbers. 
This is explained by the fact that the gas 

temperature profile obtained from the solution of the external problem (the equations of an 
inviscid shock layer) has an infinite derivative in the transverse coordinate atthebody surface. 
Because of this the correct construction of the asymptotic formulas for the equations of a 
viscous, two-phase shock layer requires, for large Reynolds numbers, that the viscous-inviscid 
interaction, which is not normally taken into account when formulating the problem within the 
framework of the first approximation of the boundary layer theory, should be taken into account. 
We also. note that the relaxation layer, as shown by the computations, exists even when the 
particle concentration is fairly low, and this may result in the particles exerting a finite 
influence on the heat exchange characteristics. 



130 

Fig.2 shows the dependence on fl of the profiles 8 (solid lines) and 6, (dashed lines; 
across the shock layer for Re = 5OOzk =i. 0.i;a-i 0.5;~ = 0.25. Here P= i. 8, 130 correspond to lines 
1-J respectively, and the dot-dash line refers to the profile 8 for the limiting case of fine 
particles. When 63150, the profiles of the carrier phase characteristics coincide with the 
limit solution practically over the whole shock layer (see Sect.3). The computations have 
also shown that increasing the parameter fi leads, other conditions being equal to reduced 
separation of the shock wave. This result was obtained earlier in /2/ for plane and axisym- 
metric flows in an inviscid shock layer. 

Fig.3 shows the dependence of the coefficients of friction r,,~, and heat exchange coef- 
ficient p (lines 14 respectively) on the Reynolds number for @=i (solid lines) and fi=S 
(dashed lines). Here k= O.i;a= 6= 0.5:0, =O.i. The expressions for ra and g have the form 

(2.6) 

We see that even when the particle density in the oncoming flow in sufficiently low 
(6=0.5), the nature of the interaction between the particles and the carrier phase has a strong 
influence on r, and q_ In particular, the difference between the corresponding quantities 
can, for various values of B, be as high as 100% and the dependence of the 
coefficient on the Reynolds number may be qualitatively quite different. 

Fig.2 Fig.3 

heat exchange 

we also computed the flows in a two-phaseviscousshock layer on a permeable surface. 
Here we considered values of the defining parameters, for which vbC<O. The analysis showed 
that in this case the nature of the flow within the shock layer is determined by the parameter 

Fw = - wb . (1 + k)+ c”* (- P,w)-“’ which is normally used in the theory of a viscous shock layer 
in a homogeneous gas /5/. At fairly large values of -F,(-FF,>3) inviscid flow occurs near 
the body (within the injection layer), and the boundary layer is displaced towards the shock 
layer and becomes the displacement layer. This is seen in Fig.1 where the lines 4 correspond 
to the profiles U,LO,@ across the shock layer for G= kx0.1; Re== 5.10*;a=0.5: fi= 6= 1. Note 
that the gas temperature relaxation layer is also displaced into the shock layer in the 

neighbourhood of the line u=O. 

3. Analysing (l.l)-(1.3) we find that the parameter @ is the basic parameter determining 
the intensity of the phase interaction. It is proportional to the ratio of the characteristic 
gas-dynamic time to the characteristic gas and particle relaxation time. To explain the 

qualitative influence of the particles on the gas-dynamic characteristics of the flow, we 
shall analyse the asymptotic formulas for the initial equations (1.1) in two limiting cases, 
as p +O and as 0 -LOO. We shall study these cases in more detail. 

When fi -co, the solution of the resulting problem of regular perturbations is sought in 
the form of series in powers of 0. Analysing the system of equations that holds for the 
principal terms of this expansion we find, that to a first approximation the motion of the 
condensed phase is independent of the gas, and the trajectories of the gas particles are 

straight lines parallel to the ySaxis. Note that the reaction of the particles on the flow Of 
carrier phase will be substantial to a first approximation only at a fairly high mass concentra- 
tion of the particles, namely when psm = O(eflex). If on the other hand psm = O(1), then the 

above effect can be neglected. 
When fi -00, analysis of (1.1) shows that to a first approximation the velocities and 

temperatures of the gas and the particles in the shock layer are the same. However, since the 

solution in question does not satisfy boundary conditions (1.2), a thin relaxation sublayer 

with thickness of the order of fi-' forms near the shock wave. In thecoordinatesystemattached 

to the shock wave surface in the normal manner, the equations describing the flow in this 

layer, to a first approximation, have the form 
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(3.1) 

Note that the relations connnecting the limiting values of the parameters in the relaxa- 
tion layer can be obtained, when z -00 , from (3.1) without considering the structure of this 
layer in detail. Denotng these parameters by the subscript g, we obtain the following finite 
relations: 

1 
&g = u,g i T,,=T,, u_~~~(u~"- uA=+s 1 (3.2) 

Following the method of asymptotic expansions /ll/ we find, #at outside the relaxation 

sublayer nSi = ui, T, = T,pa = c0nst.p. The equations which hold in this region are formally 
identical to a first approximation with the first five equations of (1.11, in which we must 
put p = 0, replace p in the first four equations by p6,, and in the fifth equation by 
pe(i + 6/a). The boundary conditions for these equations are identical at the body surface 

with conditions (1.31, and at the shock wave with conditions (3.2) written in the coordinate 
system attached to the body. 

Near the stagnation point the above equations and boundary conditions (3.2) written in 
the hypersonic approximation in the variables (2.1)-_(2.2), will take the form 

The boundary conditions at the body surface and the same as (2.5). 
Consider the asymptotic solution of (3.3), (3.4) and (2.5) at large Reynolds numbers. 

As in the case of a homogeneous gas /5/, the problem is singular as K+ca and its asymptotic 
behaviour depends on the injection parameter. When. -F,<1 the shock layer can be separated 
into the inviscid shock layer, and a boundary layer. When -F,>l, a three-layer model of 
the flow occurs, in which the effects of molecular transport can be neglected in the layers 
adjacent to the body and the shock wave, while in the intermediate region (displacement layer) 
the effect is of fundamental importance. 

When solving the external problem we replace the displacement layer by a contact discon- 
tinuity with the corresponding conditions at this discontinuity /12/, and we assume the 
longitudinal pressure gradient P,(G) to be equal to P,, where P,, is given by the formulas 
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obtained in the same manner as the Busemann-Hayes formula for a homogeneous gas /13/ 

P k 
I.=--o(l+e)(l f&y--- 

k’lnk 

(1 -k)’ (1 1 
(3.51 

P Ink 
so- ----&v+e)(++$=&-- 

(1 - kfa 1 

From /12, 14/ it follows that such an approach is asymptotically correct at low values 
of the parameter e. Taking into account (3.5), We write the solution of the externalprobLem 
in the form 

u'=&t, +- it;; , <> =r fi + rcfi = c2ii cy;; @ 
(3.6) 

51= PG$ t*UI1 ---+KK~)* 52=51(1) f 

GjXt~<~<#Ji$ 

The index i = 1,2 refers to the solution in the injection layer and shock layer respect- 
ively. The magnitude of the deviation A is found from the condition & (I/&) = 1. 

When the injection is intense (-PW>l), the solution of the internai problem will 

consist of the solutions of boundary layer equations which are identical in the neighbourhood 
of the stagnation point with (3.3), provided that we put in them A = 1, P, = Pa,, 8PJX - 

0 (P,, is determined from the solution of the extexnal problem at the contact surface). The 
boundary conditions are 

men the injection is weak (--F,s<l) the internal problem also consists of solving the 
boundary layer equations. The boundary conditions at the body surface are given by (2.5), 
and at the outer boundary by the first condition of (3.7). The system of equations (3.3) 

with boundary conditions (2.5), (3.4) describing the equilibrium flow of a gas containing 

particles (the limiting case of fine particles), was also solved by numerical methods. 

Figs.4 and 5 show the dependence of the heat exchange Coefficient q at the impermeable 

Fig.4 

surface and the separation of the shock wave I~* on 
of the principal radii of curvature of the body at 
BW = 0.f; k = i; 0.5; 0.1 are the lines l-3 respectively 
lines depict the computations without slippage and 

Fig.5 

the Reynolds number for various values 
the stagnation point. Here 8-i: oc= 0.5; 
and 8,=0.5; k = 0.1 is line d. The dashed 

temperature jump at the body surface. Me 
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see that when ReG50, then disregarding the slippage and temperature jump causes a 15-20% 

error in determining q. 
ComputatioUs have shown that in the case of small k the values of the coefficient of 

friction Q computed from the solution of the equations of the viscous shock layer and the 
boundary layer show considerable deviations from each other even at large Reynolds numbers, 
while the differences in the values of the coefficients 7, and g are practically nil at 

Re>5.105. This is due to the fact that as k-0, the value of &&al;& obtained from the 

solution of the external problem tends to infinity by virtue of the fact that the correct 
construction of the asymptotic forms of the boundary value problem (3.3)‘ (2.5)) (3.4) with 
Re-oc , must take due regard to the vortex interaction to a first approximation. This result 

was obtained earlier in /5/ for a flow of homogeneous gas. 
It is interesting to note that the nature of the dependence of the separation of the 

shock wave on the Reynolds number is strongly influenced by the surface temperature. When the 

wall is cold (Ou:< 0.25) , the dependence in not monotonic and has a local minimum, while at 
fairly high wall temperatures @,>0,4) the separation decreases montonically as the Reynolds 
number increases. 

We have also computed the two-phase equilibrium flow in a three-dimensional hypersonic 
viscous shock layer with injection. Fig.5 shows the velocity profiles u and ID across the 

shock layer at 6= i;a=0.5;0, = 0.1; Re= 5.*0* where 5(G= 0; 0.1; 0.25 correspond to lines 1-3. The 
dashed line depicts the analytical solution (3.6) of the external problem, and the dot-dash 
line the numerical solution of the internal problem (3.3), (3.7). It is clear that while 
good agreement is obtained between the numerical and asymptotic solutions for the profiles of 
u, a much larger discrepancy occurs between those solutions for the profiles of 1~. This can 
be explained by the fact that in the case of intense injection a vortex layer is already 
formed near the surface of contact discontinuity. 

The author thanks E.A. Gershbein and G.A. Tirskii for discussing the paper. 
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